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A pair of orthogonal Latin squares of order six do not exist.

A Latin square of order s is an s by s array L of the symbols {1, 2,..., 5},
such that each symbol occurs once in each row and column of L. Two Latin
squares L and M of order s are orthogonal if their superposition yields all s’
possible ordered pairs (7,/), 1 <4, j<s.

It was conjectured by Euler, and proved by Tarry [4] that there do not
exist a pair of orthogonal Latin squares of order six (see also [2, 3]). These
nonexistence proofs are long and require the consideration of many cases.
We give a short, self-contained noncomputer proof which requires a
minimum of casework.

We describe our proof in terms of transversal designs: a TD(4, 6) is a
triple (X, &, &), where X is a set of size 24, & is a partition of X into four
subsets (groups) of X of size six, and =/ is a set of 36 subsets (blocks) of X,
each of size four, such that any group meets any block in a point, and any
two points from different groups occur in a block. It is well known that a
TD(4, 6) is equivalent to a pair of orthogonal Latin squares of order six.

Let (X, &, /) be a TD(4, 6). Then P= (X, ¥ U /) is a PBD (pairwise
balanced design) with 24 points and 40 blocks (36 of size four and four of
size six). Let the points be named x; (1 i< 24), and label the blocks B;
(1 <j<40), where B,, B,, B,, and B, are the blocks of size six.

The incidence matrix of P is the 0 — 1 matrix M = (m;;) defined by

my=1 if x;€B;, 1<i<24,1<j<40,

ij S
=0 if x,€B, 1<i<24,1<j<40.
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The ith row of M is denoted by r;. If we consider each r, to be a vector in
(GF(2))*°, then the r;’s span a subspace C which we call the code of P.

LemMMA 1 (1, Lemma4.1]. dim C < 20.

Proof. For u, v € (GF(2))*°, let (u,v) denote the usual inner product
(mod 2) and let C*= {u: (u,r;) =0, 1 <i<24)}. Then (r;, ;) =1 for any i,
Js 80 (r;, r;+ 1) =0 for any i, j, k. It follows that C M C* is of codimension
one in C. Hence dim C*>dim C—1. But dim C+ dim C-=40, so
dim C<20. |

Since M has 24 rows and dim C < 20, there must be dependencies of' the
rows of M. A linear dependence can be written Y ,., ;=0 for some I <
{1,...,24}. In terms of the design P, we have a subset Y= {x;:i€l}cX
such that |B;N Y] is even, 1 <j<40.

Clearly B,\UB,, B, UB,, and B, U B, yield dependence relations. But
dim C < 20, so there must be one further dependence relation not generated
by the above. We shall establish that there is no such dependence relation.
This contradiction proves the nonexistence of a TD(4, 6).

The above may also be phrased in a coding context. The columns of M
span a subspace (code) D in (GF(2))**. A dependence relation of the rows of
M corresponds to a nonzero codeword in D™, the code dual to D. Lemma 1
is equivalent to dim D* > 4,

We will use the combinatorial terminology. If ¥ = {x,:{ & I} corresponds
1o a dependence relation we will call {Y, {Y N B,: 1 i< 40}} an even sub-
PBD. We say that Y is an even subset of X. Suppose an even sub-PBD has
m points and b; blocks of size i (i =0, 2, 4, 6). Then simple counting yields

by + by + by + bg =40
2b, + 4b, + 6b,=Tm
by + 6b, + 15b, = m(m — 1)/2.

Then b, + 3bs = m(m — 8)/8, which implies m =0mod 4 and m > 8. Also,
we may assume m < 12, complementing if necessary, since Y is an even
subset if and only if X\Y is an even subset. Thus we have

LemMmA 2. If a TD(4,6) exists, then it contains an even sub-PBD having
eight or twelve points, which is not the union of two groups of the TD.

First, we consider the case m=8. We find that b,=12, b,=28,
b, =bs=0. Thus we have an “oval-like” sub-PBD: a set Y of eight points,
no three collinear. Let Q be the PBD formed from P by deleting the points in
Y. Then Q has 16 points, 16 blocks of size four, and 24 blocks of size two.

Let Y= {a,b,c,d, e f,g h} and suppose X\Y={1,2,.,16}. We may
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suppose that the groups of & are {1,2,3,4,a,b}, {5,6.7, 8,¢,d}, {9, 10, 11,
12,¢,f}, and {13, 14, 15, 16, g, h}.

Now define a graph G, with vertex set X\ Y, whose edges are the 24 blocks
of size two in the PBD Q.

LemMMA 3. (1) G is triangle-free;
(2) G is three-regular, and any point of G is joined to precisely one
point from each of the three groups of G not containing that point.

Proof. To see that G is three-regular, choose any point i, 1 i 16, If i
occurs in x blocks of size two and y blocks of size four in Q, then x + y =7
and x 4+ 3y =15, so x =3 (and y = 4). The three blocks of size two must (in
P) contain all six points of Y which are not in the same group as x. Thus
statement (2) follows.

To prove (1), suppose that 1 59 is a triangle in G. In the PBD P we have
a block 15 eg, say, and a block 19 ¢ & (without loss of generality). Then the
block containing 5 and 9 must be 59 a g or 59 g A, but in either case a pair
is repeated. This contradiction proves that G is triangle-free. 1l

We now attempt to construct the PBD P. Let us first suppose that there is
some point i (1 <7< 16) such that the three neighbours of i in G occur in a
block of P. We can suppose that i = 1 has neighbours 5, 9, and 13 in G, and
25913 is a block of P. Now, without loss of generality, we have blocks
161014, 171115, and 181216; 25913, 261116, and 2712 14; and
six blocks, each of which contains one point from {3,4} and one from
{5, 9, 13}. Thus the neighbours of 2 in G are 8, 10, and 15. The three pairs
810, 8 15, and 10 15 must occur in three blocks which contain 3 x or 4 y
(x,y €{5,9,13}). This causes a pair to be repeated (one of 3 8, 310, 3 15,
48, 4 10, or 4 15). This is a contradiction.

Thus we may assume the following property holds: (4) For any point i
(1< i< 16) the three pairs formed by the three neighbours of i in G occur in
different blocks of P.

Now let us suppose (without loss of generality) that, in G, 1 is adjacent to
5,9, and 13; 2 is adjacent to 6, 10, and 14; 3 is adjacent to 7, 11, and 15;
and 4 is adjacent to 8, 12, and 16. By property (4), the point 1 must occur
with exactly one pair from each of the three triangles 6 10 14, 7 11 15, and
812 16. Suppose 161015 is a block; then 171116 and 1812 14 are
forced to be blocks. The three pairs 6 10, 7 11, and 8 12 are all from the
same two groups. But, then, where can the pair 59 occur? If 259 x is a
block, then, as above, the three triples 259, 27 11, and 2 8 12 would occur
in blocks, causing a pair to be repeated. The same argument shows that
359 x and 4 59 x cannot be blocks. Thus the pair 5 9 does not occur. This
contradiction proves
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LemMMA 4. No TD(4, 6) contains an even subset with eight points (i.e.,
D* has no codewords of weight eight.)

We must now consider the possibility m = 12. There are several ways the
twelve points can be distributed among the four groups:

i) 6,6,0,0;
(ii) 6,4,2,0;
(i) 6,2,2,2;
(iv) 4,4,4,0;
v) 4,4,2,2.

Case (i) is the situation of an even subset formed by two groups; we have
already noted the existence of these even subsets. For cases (ii)-(v) we use
the fact that the sum of two even subsets (mod 2) is again an even subset.
(This corresponds to taking the sum of two codewords in D~.) In each case,
add the given even subset to the even subset formed by the first two groups.
In each case, an even subset of size eight or size four is produced. But we
have already eliminated these cases.

Thus we have

LEMMA 5. No TD(4, 6) contains an even subset of size twelve, which is
not the union of two groups of the TD.

Summarizing, we have our main theorem.

THEOREM. There do not exist a pair of orthogonal Latin squares of side
six.

Proof. Lemmata 2-5. |
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